万本电子书0元读

万本电子书0元读

顶部广告

AI大模型与智能体企业级实战:DeepSeek+Dify驱动企业智能化转型电子书

智能体是人工智能大模型发展的落地方向,而企业级智能体的应用一直是行业内的刚需和痛,本书恰好为之提供了绝佳的实践思路。

售       价:¥

纸质售价:¥49.00购买纸书

7人正在读 | 0人评论 6.8

作       者:董超华,林振杰

出  版  社:电子工业出版社

出版时间:2025-10-01

字       数:10.9万

所属分类: 科技 > 计算机/网络 > 多媒体/数据通信

温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印

为你推荐

  • 读书简介
  • 目录
  • 累计评论(条)
  • 读书简介
  • 目录
  • 累计评论(条)
告别理论空谈,直击智能化实战痛点!由资深大厂产品与技术专家联袂撰写,旨在为企业决策者、技术负责人提供从战略到落地的AI转型指南,同时为开发者、创业者和个体AI爱好者揭开“大模型+智能体”的高价值应用密码。深度聚焦企业级实战,系统解析AI大模型核心技术,详解如何通过提示词工程、Agent 框架和Dify平台,*构建智能客服、数据分析等应用,直击基于Dify平台从0到1构建AI应用,详解RAG框架、函数调用、多Agent协同等关键技术在企业场景中的精准应用,覆盖知识库构建、提示词设计、服务集成的全生命周期管理等关键场景。 本书对于企业用户和个人用户具有独特价值。对于企业用户(如管理者、CTO、工程师、产品经理),本书是降本增效、业务创新与体验升级的攻略。对于个人用户(如开发者、创业者、个体AI爱好者),本书是掌握构建智能体的核心工程能力,有助于解锁职业跃迁的新机遇;同时是获取可直接复用的企业级解决方案的框架,有助于*打造个人AI生产力工具。 本书可赋能企业智能化转型,同时为个人AI实践提供了高浓度的“实战弹药”!可帮助您在AI浪潮中抢占先机,成为智能体生态的构建者与受益者。
目录展开

内容简介

前言

第1章 AI大模型时代的企业新机遇

1.1 AI新范式:从传统AI到大模型的跃迁

1.1.1 技术范式革命:从“手工作坊”到“智能工厂”

1.1.2 应用场景跃迁:从“工具赋能”到“生态重构”

1.1.3 企业转型路径:构建智能体生态体系

1.2 AI大模型对企业的核心价值分析

1.2.1 提效:从“人力密集型”到“智能自动化”

1.2.2 创新:从“渐进式改进”到“范式突破”

1.2.3 体验升级:从“标准化服务”到“个性化体验”

1.3 企业引入AI大模型的战略考量

1.3.1 价值评估框架:成本、收益与风险

1.3.2 关键决策点:自建、合作与采购

1.3.3 关键准备:夯实数据基础、人才队伍与合规体系三大基石

1.4 AI大模型应用的典型场景速览

1.5 本章小结

第2章 大模型技术概览:能力、局限

2.1 揭开面纱:大模型的核心定义与关键特征

2.1.1 核心定义:从统计模型到认知引擎

2.1.2 关键特征:突破传统AI范式的四维革命

2.1.3 认知革命:认知的重构

2.2 能力边界:大模型能做什么

2.2.1 核心能力:文本生成、理解、推理与对话

2.2.2 涌现能力:Few-shot/Zero-shot学习的魔力

2.2.3 多模态交互:超越文本的世界

2.3 理性看待:大模型的局限与挑战

2.3.1 技术挑战:幻觉、偏见、知识滞后与可解释性

2.3.2 工程与成本挑战:训练、推理与部署

2.3.3 安全与伦理风险:数据隐私、内容安全与滥用

2.4 本章小结

第3章 探源究底:大模型核心技术简史与原理

3.1 技术演进:从统计语言模型到深度学习

3.1.1 早期探索:统计语言模型的贡献与局限

3.1.2 序列建模突破:RNN与LSTM的兴衰

3.2 基石架构:Transformer架构与自注意力机制

3.2.1 自注意力机制:理解上下文的关键

3.2.2 并行计算优势:规模化的基石

3.3 语言的数学表示:Embedding的奥秘

3.3.1 从词语到向量:让机器理解语义

3.3.2 上下文感知:动态变化的语义

3.3.3 分词:文本预处理的关键步骤

3.3.4 多模态:表示图像、声音等信息

3.4 学习的艺术:预训练与微调范式

3.4.1 预训练:奠定通用知识基础

3.4.2 微调:适配特定任务与领域

3.4.3 对齐人类:指令微调与RLHF的作用

3.5 本章小结

第4章 DeepSeek模型家族全解析与核心技术揭秘

4.1 DeepSeek的崛起之路

4.2 DeepSeek核心模型矩阵详解

4.2.1 通用大模型

4.2.2 代码语言模型

4.2.3 推理模型

4.3 DeepSeek的核心技术“杀手锏”

4.3.1 数据驱动:构建卓越能力的基石

4.3.2 架构创新:追求性能与效率的极致平衡

4.3.3 训练策略优化:提升效率、稳定性与对齐效果

4.4 技术创新总结

4.5 本章小结

第5章 提示词工程:与大模型对话的艺术

5.1 理论基础:深刻理解提示词为何如此关键

5.1.1 大模型是“模式识别与序列预测”大师

5.1.2 指令微调让大模型“听从指挥”

5.1.3 自注意力机制使大模型聚焦于关键信息

5.2 结构化提示:设计高效提示词的核心要素

5.3 零样本和少样本

5.3.1 零样本提示:不给示例,仅凭指令

5.3.2 少样本提示:提供示例,引导大模型进行模仿

5.3.3 如何在实践中选择使用零样本还是少样本策略

5.4 思维链、思维树与自我反思

5.4.1 思维链:让大模型像人一样“思考”

5.4.2 思维树:企业决策的“多线程推演”

5.4.3 自我反思:让大模型学会“审视”和“改进”

5.4.4 如何在实践中选择和应用这些推理技术

5.5 企业级提示词设计实战模板

5.5.1 智能客服提示词实战模板

5.5.2 市场营销文案创作提示词实战模板

5.6 本章小结

第6章 RAG:让大模型掌握私域知识

6.1 RAG架构与原理

6.2 核心组件1:Embedding与向量数据库

6.2.1 文本向量化:选择合适的Embedding模型

6.2.2 向量存储与检索:数据库选型

6.2.3 向量存储与检索:索引策略

6.3 核心组件2:知识库构建与文档处理

6.3.1 数据准备:文档解析、清洗与分块策略

6.3.2 知识库管理:元数据、更新与维护

6.3.3 知识库的增量索引策略

6.4 本章小结

第7章 扩展模型边界:赋予AI“行动”能力

7.1 函数调用:赋予大模型连接并驱动外部世界的能力

7.1.1 函数调用的核心定义与关键价值

7.1.2 函数调用的核心实现原理

7.2 函数调用的关键技术细节深度剖析

7.2.1 函数的精确描述与规范

7.2.2 函数选择与参数生成的内部决策机制

7.2.3 函数的实际执行与结果的准确返回

7.2.4 函数的异常处理与重试机制

7.3 DeepSeek函数调用功能

7.4 本章小结

第8章 AI Agent:迈向真正自主的智能体

8.1 从被动式助手到具备自主决策能力的智能体

8.2 以大模型为“智能大脑”的协同系统

8.2.1 大模型:智能体的认知与决策核心引擎

8.2.2 规划模块:实现任务分解与生成行动计划的核心

8.2.3 记忆模块:维持智能体行为的连贯性、实现经验学习的关键

8.2.4 工具使用模块:赋予智能体与外部世界交互和行动的能力

8.2.5 反思与自我修正模块:赋予智能体从经验与失败中学习和进化的能力

8.3 主流智能体开发框架的技术选型与比较

8.3.1 LangChain Agents:通用智能体构建框架

8.3.2 LlamaIndex Agents:数据管理和检索专家

8.3.3 Microsoft AutoGen:构建多智能体协同工作的框架

8.3.4 选择合适的智能体框架

8.4 本章小结

第9章 Dify平台入门:加速AI应用开发

9.1 Dify平台简介

9.1.1 Dify平台的核心理念:可声明式的定义AI应用

9.1.2 Dify平台的产品定位:AI应用开发与LLMOps平台

9.1.3 Dify平台的发展历程与社区生态

9.2 Dify平台核心概念的详解

9.2.1 应用:构建和交付的AI服务实例

9.2.2 知识库:RAG的关键数据管理模块

9.2.3 模型提供商:模型的统一管理

9.2.4 提示词编排:强大的可视化画布

9.2.5 工具与插件:与外部世界交互的“手脚”

9.3 环境准备

9.3.1 Dify平台的部署选型

9.3.2 Dify平台的部署步骤

9.3.3 Dify平台大模型配置

9.4 本章小结

第10章 Dify平台实操:构建第一个AI应用

10.1 创建AI应用与基础配置

10.1.1 应用类型的选择

10.1.2 应用的基础设置

10.1.3 快速上手体验

10.2 AI应用的可视化编排

10.2.1 深刻理解Dify可视化编排画布的核心构成与各类功能节点

10.2.2 有效运用指令、变量与上下文管理

10.2.3 从开场白到多轮交互的智能管理

10.3 AI应用与知识库的集成

10.3.1 创建并管理知识库

10.3.2 配置知识库的检索策略

10.3.3 引用和利用知识库检索到的上下文

10.4 AI应用的发布

10.4.1 发布前的全面预览与深度调试

10.4.2 应用的公开分享或嵌入代码

10.4.3 应用的API访问与集成

10.5 本章小结

第11章 Dify平台企业级智能体实战案例

11.1 案例一:Dify+DeepSeek搭建智能客服机器人助手

11.1.1 搭建本地化电商常见问题知识库

11.1.2 通过Dify平台编排智能客服助手应用

11.1.3 发布智能客服应用并嵌入业务系统

11.2 案例二:Dify+DeepSeek搭建数据智能分析助手

11.2.1 搭建能够解释数据库关键字段的知识库

11.2.2 通过Dify平台编排基于自然语言的数据智能分析助手

11.2.3 发布基于自然语言的数据智能分析助手

11.3 案例三:Dify+DeepSeek搭建需求智能预测引擎

11.3.1 通过Dify平台编排需求智能预测引擎

11.3.2 通过Dify平台发布需求智能预测引擎

11.4 案例四:Dify+DeepSeek搭建出行规划助手

11.4.1 配置高德出行服务MCP准备

11.4.2 通过Dify平台编排高德MCP的出行规划助手

11.4.3 通过Dify平台发布高德MCP的出行规划助手

11.5 案例五:Dify+DeepSeek搭建合同审查助手

11.5.1 通过Dify平台编排合同审查助手

11.5.2 通过Dify平台发布合同审查助手

11.6 本章小结

累计评论(条) 个书友正在讨论这本书 发表评论

发表评论

发表评论,分享你的想法吧!

买过这本书的人还买过

读了这本书的人还在读

回顶部